Advertisement

How Useful is COVID-19 Antibody Testing – A Current Assessment for Oncologists

Published:October 13, 2020DOI:https://doi.org/10.1016/j.clon.2020.10.008

      Highlights

      • Antibody testing has been touted as the key to undo the SARS-CoV-2 lockdown, particularly for cancer patients.
      • Testing has shown only low levels of seroconversion in populations and individuals tested for antibodies.
      • This poses questions about immune responses induced by COVID-19.
      • Uncertainty has been amplified by a lack of standardisation of testing and variability between kits.
      • Oncology consultants and treatment centres cannot rely on antibody testing to safely re-establish services.

      Abstract

      The coronavirus disease 2019 (COVID-19) pandemic due to infection by a new human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has seriously disrupted the provision of oncology services and their uptake. Antibody testing, both at an individual level and of populations, has been widely viewed to be a key activity for guiding the options for treatment of high-risk individuals, as well as the implementation of safe control of infection measures. Ideally, the detection of a specific antibody should signify that all individuals tested have been infected by SARS-CoV-2 and that in the case of specific IgG that they are immune to further infection. This would enable SARS-CoV-2-infected individuals to be appropriately managed and healthcare workers shown to be immune to return to work where they would no longer pose a risk to their patients or be at risk themselves. Unfortunately, this is not the case for COVID-19, where it has been shown that immunity may not be protective, and seroconversion delayed or absent. The variability in antibody test performance, particularly that of lateral flow assays, has caused confusion for the public and healthcare professions alike. Many antibody test devices have been made available without independent evaluations and these may lack both adequate sensitivity and specificity. This review seeks to educate healthcare workers, particularly those working in oncology, of the current benefits and limitations of SARS-CoV-2 antibody testing.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Clinical Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Li Q.
        • Guan X.
        • Wu P.
        • Wang X.
        • Zhou L.
        • Tong Y.
        • et al.
        Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.
        N Engl J Med. 2020; 382: 1199-1207
        • Coranaviridae Study Group of the International Committee on Taxonomy of Viruses
        The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.
        Nat Microbiol. 2020; 5: 536-544
        • Jin Y.
        • Yang H.
        • Ji W.
        • Wu W.
        • Chen S.
        • Zhang W.
        • et al.
        Virology, epidemiology, pathogenesis, and control of COVID-19.
        Viruses. 2020; 12: 372https://doi.org/10.3390/v12040372
        • Kozel T.R.
        • Burnham-Marusich A.R.
        Point-of-care testing for infectious diseases: past, present, and future.
        J Clin Microbiol. 2017; 55: 2313-2320
        • Studdert D.M.
        • Hall M.A.
        Disease control, civil liberties, and mass testing – calibrating restrictions during the Covid-19 pandemic.
        N Engl J Med. 2020; 383: 102-104https://doi.org/10.1056/NEJMp2007637
        • Wölfel R.
        • Corman V.M.
        • Guggemos W.
        • Seilmaier M.
        • Zange S.
        • Müller M.A.
        • et al.
        Virological assessment of hospitalized patients with COVID-2019.
        Nature. 2020; 581: 465-469https://doi.org/10.1038/s41586-020-2196-x
        • Almeida J.D.
        • Berry D.M.
        • Cunningham C.H.
        • Hamre D.
        • Hofstad M.S.
        • Mallucci L.
        • et al.
        Coronaviruses Nat. 1968; 220: 650
        • Tyrrell D.A.
        • Bynoe M.L.
        Cultivation of a novel type of common-cold virus in organ cultures.
        Br Med J. 1965; 1: 1467-1470
        • Hamre D.
        • Connelly Jr., A.P.
        • Procknow J.J.
        Virologic studies of acute respiratory disease in young adults. IV. Virus isolations during four years of surveillance.
        Am J Epidemiol. 1966; 83: 238-249
        • McIntosh K.
        • Becker W.B.
        • Chanock R.
        Growth in suckling-mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease.
        Proc Natl Acad Sci USA. 1967; 58: 2268-2273
        • Kaye H.S.
        • Marsh H.B.
        • Dowdle W.R.
        Seroepidemiologic survey of coronavirus (strain OC 43) related infections in a children’s population.
        Am J Epidemiol. 1971; 94: 43-49
        • Kaye H.S.
        • Dowdle W.R.
        Seroepidemiologic survey of coronavirus (strain 229E) infections in a population of children.
        Am J Epidemiol. 1975; 101: 238-244
        • Cavallaro J.J.
        • Monto A.S.
        Community-wide outbreak of infection with a 229E-like coronavirus in Tecumseh, Michigan.
        J Infect Dis. 1970; 122: 272-279
        • Vabret A.
        • Mourez T.
        • Gouarin S.
        • Petitjean J.
        • Freymuth F.
        An outbreak of coronavirus OC43 respiratory infection in Normandy, France.
        Clin Infect Dis. 2003; 36: 985-989
        • Zeng Z.Q.
        • Chen D.H.
        • Tan W.P.
        • Qiu S.Y.
        • Xu D.
        • Liang H.X.
        • et al.
        Epidemiology and clinical characteristics of human coronaviruses OC43, 229E, NL63, and HKU1: a study of hospitalized children with acute respiratory tract infection in Guangzhou, China.
        Eur J Clin Microbiol Infect Dis. 2018; 37: 363-369
        • Wang Y.
        • Li X.
        • Liu W.
        • Gan M.
        • Zhang L.
        • Wang J.
        • et al.
        Discovery of a subgenotype of human coronavirus NL 63 associated with severe lower respiratory tract infection in China, 2018.
        Emerg Microbe. Infect. 2020; 9: 246-255
        • Vassillara F.
        • Spyridaki A.
        • Pothitos G.
        • Deliveliotou A.
        • Papadopoulos A.
        A rare case of human coronavirus 229E associated with acute respiratory distress syndrome in a healthy adult.
        Case Rep Infect Dis. 2018; 2018: 6796839https://doi.org/10.1155/2018/6796839
        • Ogimi C.
        • Englund J.A.
        • Bradford M.C.
        • Qin X.
        • Boeckh M.
        • Waghmare A.
        Characteristics and outcomes of coronavirus infection in children: the role of viral factors and an immunocompromised state.
        J Pediatr Infect Dis Soc. 2019; 8: 21-28
        • Nilsson A.
        • Edner N.
        • Albert J.
        • Ternhag A.
        Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child.
        Infect Dis. 2020; 52: 419-422
        • Corman V.M.
        • Muth D.
        • Niemeyer D.
        • Drosten C.
        Hosts and sources of endemic human coronaviruses.
        Adv Virus Res. 2018; 100: 163-188https://doi.org/10.1016/bs.aivir.2018.01.001
        • Centers for Disease Control and Prevention (CDC)
        Outbreak of severe acute respiratory syndrome – worldwide, 2003.
        MMWR Morb Mortal Wkly Rep. 2003; 52: 226-228
        • Centers for Disease Control and Prevention (CDC)
        Outbreak of severe acute respiratory syndrome – worldwide, 2003.
        MMWR Morb Mortal Wkly Rep. 2003; 52: 241-246
        • Ksiazek T.G.
        • Erdman D.
        • Goldsmith C.S.
        • Zaki S.R.
        • Peret T.
        • Emery S.
        • et al.
        A novel coronavirus associated with severe acute respiratory syndrome.
        N Engl J Med. 2003; 348: 1953-1966
        • Zhong N.S.
        • Wong G.W.K.
        Epidemiology of severe acute respiratory syndrome (SARS): adults and children.
        Pediatr Respir Rev. 2004; 5: 270-274
        • Guan Y.
        • Zheng B.J.
        • He Y.Q.
        • Liu X.L.
        • Zhuang Z.X.
        • Cheung C.L.
        • et al.
        Isolation and characterization of viruses related to the SARS coronavirus from animals in China.
        Science. 2003; 302: 276-278
        • Lau S.K.
        • Woo P.C.
        • Li K.S.M.
        • Huang Y.
        • Tsoi H.W.
        • Wong B.H.L.
        • et al.
        Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.
        Proc Natl Acad Sci USA. 2005; 102: 14040-14045
        • Cheng V.C.
        • Lau S.K.
        • Woo P.C.
        • Yuen K.Y.
        Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.
        Clin Microbiol Rev. 2007; 20: 660-694
        • Mackay I.M.
        • Arden K.E.
        MERS coronavirus: diagnostics, epidemiology and transmission.
        Virol J. 2015; 12: 222https://doi.org/10.1186/s12985-015-0439-5
        • Wu F.
        • Zhao S.
        • Yu B.
        • Chen Y.M.
        • Wang W.
        • Song Z.G.
        • et al.
        A new coronavirus associated with human respiratory disease in China.
        Nature. 2020; 579: 265-269
        • Lam T.T.
        • Shum M.H.
        • Zhu H.C.
        • Tong Y.G.
        • Ni X.B.
        • Liao Y.S.
        • et al.
        Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins.
        Nature. 2020; 583: 282-285https://doi.org/10.1038/s41586-020-2169-0
        • Cui J.
        • Li F.
        • Shi Z.L.
        Origin and evolution of pathogenic coronaviruses.
        Nat Rev Microbiol. 2019; 17: 181-192
        • Zhou X.
        • Li Y.
        • Li T.
        • Zhang W.
        Follow-up of asymptomatic patients with SARS-CoV-2 infection.
        Clin Microbiol Infect. 2020; 26: 957-959https://doi.org/10.1016/j.cmi.2020.03.024
        • Xie J.
        • Tong Z.
        • Guan X.
        • Du B.
        • Qiu H.
        Clinical characteristics of patients who died of coronavirus disease 2019 in China.
        JAMA Netw Open. 2020; 3e205619https://doi.org/10.1001/jamanetworkopen.2020.5619
        • Grasselli G.
        • Zangrillo A.
        • Zanella A.
        • Antonelli M.
        • Cabrini L.
        • Castelli A.
        • et al.
        Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region.
        Italy JAMA. 2020; 323: 1574-1581https://doi.org/10.1001/jama.2020.5394
        • Fang L.
        • Karakiulakis G.
        • Roth M.
        Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?.
        Lancet Respir Med. 2020; 8e21https://doi.org/10.1016/S2213-2600(20)30116-8
        • Xu Y.
        • Li X.
        • Zhu B.
        • Liang H.
        • Fang C.
        • Gong Y.
        • et al.
        Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding.
        Nat Med. 2020; 26: 502-505
        • Wu Z.
        • McCoogan J.M.
        Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention.
        JAMA. 2020; 323: 1239-1242https://doi.org/10.1001/jama.2020.2648
        • Meo S.A.
        • Al-Khlaiwi T.
        • Usmani A.M.
        • Meo A.S.
        • Klonoff D.C.
        • Hoang T.D.
        Biological and epidemiological trends in the prevalence and mortality due to outbreaks of novel coronavirus COVID-19.
        J King Saud Univ Sci. 2020; 32: 2495-2499https://doi.org/10.1016/jksus.2020.04.004
        • Lauer S.A.
        • Grantz K.H.
        • Bi Q.
        • Jones F.K.
        • Zheng Q.
        • Meredith H.R.
        • et al.
        The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application.
        Ann Intern Med. 2020; 172: 577-582https://doi.org/10.7326/M20-0504
        • Del Rio C.
        • Malani P.N.
        COVI-19-new insights on a rapidly changing epidemic.
        JAMA. 2020; 323: 1339-1340https://doi.org/10.1001/jama.2020.3072
        • Peiris J.S.
        • Chu C.M.
        • Cheng V.C.
        • Chan K.S.
        • Hung I.F.N.
        • Poon L.L.M.
        • et al.
        Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study.
        Lancet. 2003; 361: 1767-1772
        • Hsueh P.R.
        • Hsiao C.H.
        • Yeh S.H.
        • Wang W.K.
        • Chen P.J.
        • Wang J.T.
        • et al.
        Microbiologic characteristics, serologic responses, and clinical manifestations in severe acute respiratory syndrome, Taiwan.
        Emerg Infect Dis. 2003; 9: 1163-1167
        • Nie Y.
        • Wang G.
        • Shi X.
        • Zhang H.
        • Qiu Y.
        • He Z.
        • et al.
        Neutralizing antibodies in patients with severe acute respiratory syndrome-associated coronavirus infection.
        J Infect Dis. 2004; : 1119-1126
        • Hsueh P.R.
        • Huang L.M.
        • Chen P.J.
        • Kao C.L.
        • Yang P.C.
        Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus.
        Clin Microbiol Infect. 2004; 10: 1062-1066
        • Lau Y.L.
        • Peiris J.S.
        Pathogenesis of severe acute respiratory syndrome.
        Curr Opin Immunol. 2005; 17: 404-410
        • Cameron M.J.
        • Ran L.
        • Xu L.
        • Danesh A.
        • Bermejo-Martin J.F.
        • Cameron C.M.
        • et al.
        Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome.
        J Virol. 2007; 81: 8692-8706
        • Meyer B.
        • Drosten C.
        • Müller M.A.
        Serological assays for emerging coronaviruses: challenges and pitfalls.
        Virus Res. 2014; 194: 175-183
        • Zhong X.
        • Yang H.
        • Guo Z.F.
        • Sin W.Y.F.
        • Chen W.
        • Xu J.
        • et al.
        B-cell responses in patients who have recovered from severe acute respiratory syndrome target a dominant site in the S2 domain of the surface spike glycoprotein.
        J Virol. 2005; 79: 3401-3408
        • Leung G.M.
        • Lim W.W.
        • Ho L.M.
        Seroprevalence of IgG antibodies to SARS-coronavirus in asymptomatic or subclinical population groups.
        Epidemiol Infect. 2000; 134: 211-221
        • Krokhin O.
        • Li Y.
        • Andonov A.
        • Feldmann H.
        • Flick R.
        • Jones S.
        • et al.
        Mass spectrometric characterization of proteins from the SARS virus.
        Mol Cell Proteomics. 2003; 2: 346-356
        • Rota P.A.
        • Oberste M.S.
        • Monroe S.S.
        • Nix W.A.
        • Campagnoli R.
        • Icenogle J.P.
        • et al.
        Characterization of a novel coronavirus associated with severe acute respiratory syndrome.
        Science. 2003; 300: 1394-1399
        • Woo P.C.
        • Lau S.K.
        • Wong B.H.
        • Chan K.H.
        • Hui W.T.
        • Kwan G.S.W.
        • et al.
        False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by Western blotting with recombinant SARS-CoV spike polypeptide.
        J Clin Microbiol. 2004; 42: 5885-5888
        • Li W.
        • Moore M.J.
        • Vasilieva N.
        • Sul J.
        • Wong S.K.
        • Berne M.A.
        • et al.
        Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.
        Nature. 2003; 426: 450-454
        • Du L.
        • Zhao G.
        • He Y.
        • Guo Y.
        • Zheng B.J.
        • Jiang S.
        • et al.
        Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model.
        Vaccine. 2007; 25: 2832-2838
        • Zhao J.
        • Wang W.
        • Wang W.
        • Zhao Z.
        • Zhang Y.
        • Lv P.
        • et al.
        Comparison of immunoglobulin G responses to the spike and nucleocapsid proteins of severe acute respiratory syndrome (SARS) coronavirus in patients with SARS.
        Clin Vaccine Immunol. 2007; 14: 839-846
        • Yan Y.
        • Chang L.
        • Wang L.
        Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): current status, challenges, and countermeasures.
        Rev Med Virol. 2020; 30e2106https://doi.org/10.1002/rmv.2106
        • Iacobucci G.
        Covid-19: new government study aims to track infection and immunity in population.
        BMJ. 2020; 369: m1636https://doi.org/10.1136/bmj.m1636
        • Beeching N.J.
        • Fletcher T.E.
        • Beadsworth M.B.J.
        Covid-19: testing times.
        BMJ. 2020; 369: m1403https://doi.org/10.1136/bmj.m1403
        • Bahadir E.B.
        • Sezgintürk M.K.
        Lateral flow assays: principles, designs and labels.
        Trends Analyt Chem. 2016; 82: 286-306
        • Bulterys M.
        • Jamieson D.J.
        • O’Sullivan M.J.
        • Cohen M.H.
        • Maupin R.
        • Nesheim S.
        • et al.
        Rapid HIV-1 testing during labor: a multicentre study.
        JAMA. 2004; 292: 219-223
        • Parekh B.S.
        • Ou C.Y.
        • Fonjungo P.N.
        • Kalou M.B.
        • Rottinghaus E.
        • Puren A.
        • et al.
        Diagnosis of human immunodeficiency virus infection.
        Clin Microbiol Rev. 2018; 32 (18)e00064https://doi.org/10.1128/CMR.00064-18
        • Ong J.J.
        • Fu H.
        • Smith M.K.
        • Tucker J.D.
        Expanding syphilis testing: a scoping review of syphilis testing interventions among key populations.
        Expert Rev Anti Infect Ther. 2018; 16: 423-432
        • Abbasi J.
        The promise and peril of antibody testing for COVID-19.
        JAMA. 2020; 323: 1881-1883https://doi.org/10.1001/jama.2020.6170
        • Castro R.
        • Luz P.M.
        • Wakimoto M.D.
        • Veloso V.G.
        • Grinsztejn B.
        • Perazzo H.
        COVID-19: a meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil.
        Braz J Infect Dis. 2020; 24: 180-187https://doi.org/10.1016/bjid.2020.04.003
        • Li Z.
        • Yi Y.
        • Luo X.
        • Xiong N.
        • Liu Y.
        • Li S.
        • et al.
        Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis.
        J Med Virol. 2020; 92: 1518-1524https://doi.org/10.1002/jmv.25727
        • Pan Y.
        • Li X.
        • Yang G.
        • Fan J.
        • Tang Y.
        • Zhao J.
        • et al.
        Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients.
        J Infect. 2020; 81: E28-E32https://doi.org/10.1016/j.inf.2020.03.051
        • Döhla M.
        • Boesecke C.
        • Schulte B.
        • Diegmann C.
        • Sib E.
        • Richter E.
        • et al.
        Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity.
        Public Health. 2020; 182: 170-172
        • Hoffman T.
        • Nissen K.
        • Krambrich J.
        • Rönnberg B.
        • Akaberi D.
        • Esmaeilzadeh M.
        • et al.
        Evaluation of a COVID-19 IgM and IgG rapid test; an efficient tool for assessment of past exposure to SARS-CoV-2.
        Infect Ecol Epidemiol. 2020; 10: 1754538https://doi.org/10.1080/20008686.2020.1754538
        • Wang Q.
        • Du Q.
        • Guo B.
        • Mu D.
        • Lu X.
        • Ma Q.
        • et al.
        A method to prevent SARS-CoV-2 IgM false positives in gold immunochromatography and enzyme-linked immunosorbent assays.
        J Clin Microbiol. 2020; 58 (20)e00375https://doi.org/10.1128/JCM.00375-20
        • Perera R.A.
        • Mok C.K.
        • Tsang O.T.
        • Lv H.
        • Ko R.L.W.
        • Wu N.C.
        • et al.
        Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020.
        Euro Survell. 2020; 25: 2000421https://doi.org/10.2807/1560-7917.ES.2020.25.16.2000421
        • Xiang F.
        • Wang X.
        • He X.
        • Peng Z.
        • Yang B.
        • Zhang J.
        • et al.
        Antibody detection and dynamic characteristics in patients with COVID-19.
        Clin Infect Dis. 2020 Apr 19; (ciaa461)https://doi.org/10.1093/cid/ciaa461
        • Guo L.
        • Ren L.
        • Yang S.
        • Xiao M.
        • Chang D.
        • Yang F.
        • et al.
        Profiling early humoral response to diagnose novel coronavirus disease (COVID-19).
        Clin Infect Dis. 2020; 71: 778-785https://doi.org/10.1093/cid/ciaa310
        • Sethuraman N.
        • Jeremiah S.S.
        • Ryo A.
        Interpreting diagnostic tests for SARS-CoV-2.
        JAMA. 2020; 323: 2249-2251https://doi.org/10.1001/jama.2020.8259
        • Zou L.
        • Ruan F.
        • Huang M.
        • Liang L.
        • Huang H.
        • Hong Z.
        • et al.
        SARS-CoV-2 viral load in upper respiratory specimens of infected patients.
        N Engl J Med. 2020; 382: 1177-1179
        • Lippi G.
        • Salvagno G.L.
        • Pegoraro M.
        • Militello V.
        • Caloi C.
        • Peretti A.
        • et al.
        Assessment of immune response to SARS-CoV-2 with fully automated MAGLUMI 2019-nCoV IgG ad IgM chemiluminescence immunoassays.
        Clin Chem Lab Med. 2020; 58: 1156-1159https://doi.org/10.1515/cclm-2020-0473
        • Liu W.
        • Liu L.
        • Kou G.
        • Zheng Y.
        • Ding Y.
        • Ni W.
        • et al.
        Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2.
        J Clin Microbiol. 2020; 58e00461https://doi.org/10.1128/JCM.00461-20
        • To K.K.
        • Tsang O.T.
        • Leung W.S.
        • Tam A.R.
        • Wu T.C.
        • Lung D.C.
        • et al.
        Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study.
        Lancet Infect Dis. 2020; 20: 565-574
        • Zhong L.
        • Chuan J.
        • Gong B.
        • Shuai P.
        • Zhou Y.
        • Zhang Y.
        • et al.
        Detection of serum IgM and IgG for COVID-19 diagnosis.
        Sci China Life Sci. 2020; 63: 777-780
        • Wang B.
        • Wang L.
        • Kong X.
        • Geng J.
        • Xiao D.
        • Ma C.
        • et al.
        Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients.
        J Med Virol. 2020; 92: 1684-1689https://doi.org/10.1002/jmv/25946
        • Zhang G.
        • Nie S.
        • Zhang Z.
        • Zhang Z.
        Longitudinal change of SARS-Cov2 antibodies in patients with COVID-19.
        J Infect Dis. 2020; 222: 183-188https://doi.org/10.1093/infdis/jiaa229
        • World Health Organization
        Population-based age-stratified seroepidemiological investigation protocol for COVID-19 virus infection.
        World Health Organization, 17 March 2020 (Available at:)
        • Lan L.
        • Xu D.
        • Ye G.
        • Xia C.
        • Wang S.
        • Li Y.
        • et al.
        Positive RT-PCR test results in patients recovered from COVID-19.
        JAMA. 2020; 323: 1502-1503https://doi.org/10.1001/jama.2020.2783
        • Li N.
        • Wang X.
        • Lv T.
        Prolonged SARS-CoV-2 RNA shedding: not a rare phenomenon.
        J Med Virol. 2020; 92: 2286-2287https://doi.org/10.1002/jmv.25952
        • Hall M.A.
        • Studdert D.M.
        Privileges and immunity certification during the COVID-19 pandemic.
        JAMA. 2020; 323: 2243-2244https://doi.org/10.1001/jama.2020.7712
        • Kirkcaldy R.D.
        • King B.A.
        • Brooks J.T.
        COVID-19 and postinfection immunity limited evidence, many remaining questions.
        JAMA. 2020; 323: 2245-2246https://doi.org/10.1001/jama.2020.7869
        • Xu Z.
        • Shi L.
        • Wang Y.
        • Zhang J.
        • Huang L.
        • Zhang C.
        • et al.
        Pathological findings of COVID-19 associated with acute respiratory distress syndrome.
        Lancet Respir Med. 2020; 8: 420-422
        • Sarzi-Puttini P.
        • Giorgi V.
        • Sirrotti S.
        • Marotto D.
        • Ardizzone S.
        • Rizzardini G.
        • et al.
        COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome?.
        Clin Exp Rheumatol. 2020; 38: 337-342
        • Cao X.
        COVID-19: immunopathology and its implications for therapy.
        Nat Rev Immunol. 2020; 20: 269-270
        • Zhao J.
        • Yuan Q.
        • Wang H.
        • Liu W.
        • Liao X.
        • Su Y.
        • et al.
        Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019.
        Clin Infect Dis. 2020 Mar 28; (ciaa344. doi: 1093/cid/ciaa344)
        • Shen C.
        • Wang Z.
        • Zhao F.
        • Yang Y.
        • Li J.
        • Yuan J.
        • et al.
        Treatment of 5 critically ill patients with COVID-19 with convalescent plasma.
        JAMA. 2020; 323: 1582-1589
        • Casadevall A.
        • Pirofski L.A.
        The convalescent sera option for containing COVID-19.
        J Clin Invest. 2020; 130: 1545-1548
        • Lee A.W.M.
        • Xu Z.Y.
        • Lin L.
        • Xu J.
        • Yang J.
        • Lee E.
        • et al.
        Advocacy to provide good quality oncology services during the COVID-19 pandemic – actions at 3-levels.
        Radiother Oncol. 2020; 149: 25-29
        • Dinmohamed A.G.
        • Visser O.
        • Verhoeven R.H.A.
        • Louwman M.W.J.
        • Van Nederveen F.H.
        • Willems S.M.
        • et al.
        Fewer cancer diagnoses during the COVID-19 epidemic in the Netherlands.
        Lancet Oncol. 2020; 21: 750-751
        • Raymond E.
        • Thieblemont C.
        • Alran S.
        • Faivre S.
        Impact of the COVID-19 outbreak on the management of patients with cancer.
        Target Oncol. 2020; 15: 249-259https://doi.org/10.1007/s11523-020-00721-1
        • European Society of Medical Oncology
        Cancer patient management during the COVID-19 pandemic.
        (Available at:) (Accessed)
      1. (Accessed)
        • Bermingham A.
        • Heinen P.
        • Iturriza-Gómara M.
        • Gray J.
        • Appleton H.
        • Zambon M.C.
        Laboratory diagnosis of SARS.
        Phil Trans R Soc Lond B. 2004; 359: 1083-1089
        • Meyer B.
        • Torriani G.
        • Yerly S.
        • Mazza L.
        • Calame A.
        • Arm-Vernez I.
        • et al.
        Validation of a commercially available SARS-CoV-2 serological immunoassay.
        Clin Microbiol Infect. 2020; 26: 1386-1394
        • Sood N.
        • Simon P.
        • Ebner P.
        • Eichner D.
        • Reynolds J.
        • Bendavid E.
        • et al.
        Seroprevalence of SARS-CoV-2-specific antibodies among adults in Los Angeles County, California, on April 10-11, 2020.
        JAMA. 2020; 323: 2425-2427
        • Regalado A.
        Blood tests show 14% of people are now immune to covid-19 in one town in Germany.
        MIT Technol Rev, 2020 (Available at:)
        • Garcia-Basteiro A.L.
        • Moncunill G.
        • Tortajada M.
        • Vidal M.
        • Guinovart C.
        • Jimenez A.
        • et al.
        Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large Spanish reference hospital.
        Nat Commun. 2020; 11: 3500https://doi.org/10.1038/s41467-020-17318-x
        • Patel M.M.
        • Thornburg N.J.
        • Stubblefield W.B.
        • Talbot H.K.
        • Coughlin M.M.
        • Feldstein L.R.
        • et al.
        Change in antibodies to SARS-CoV-2 over 60 days among health care personnel in Nashville, Tennessee.
        JAMA. 2020; https://doi.org/10.1001/jama.2020.18796
        • Le Bert N.
        • Tan A.T.
        • Kunasegaran K.
        • Tham C.Y.
        • Hafezi M.
        • Chia A.
        • et al.
        Different pattern of pre-existing SARS-COV-2 specific T cell immunity in SARS-recovered and uninfected individuals.
        bioRxiv. 2020; https://doi.org/10.1101/2020.05.26.115832