Advertisement

Adaptive Radiotherapy in the Management of Cervical Cancer: Review of Strategies and Clinical Implementation

      Abstract

      The complex and varied motion of the cervix–uterus target during external beam radiotherapy (EBRT) underscores the clinical benefits afforded by adaptive radiotherapy (ART) techniques. These gains have already been realised in the implementation of image-guided adaptive brachytherapy, where adapting to anatomy at each fraction has seen improvements in clinical outcomes and a reduction in treatment toxicity. With regards to EBRT, multiple adaptive strategies have been implemented, including a personalised internal target volume, offline replanning and a plan of the day approach. With technological advances, there is now the ability for real-time online ART using both magnetic resonance imaging and computed tomography-guided imaging. However, multiple challenges remain in the widespread dissemination of ART. This review investigates the ART strategies and their clinical implementation in EBRT delivery for cervical cancer.

      Key words

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Clinical Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bray F.
        • Ferlay J.
        • Soerjomataram I.
        • Siegel R.L.
        • Torre L.A.
        • Jemal A.
        Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
        CA Cancer J Clin. 2018; 68: 394-424https://doi.org/10.3322/caac.21492
        • Yan D.
        • Vicini F.
        • Wong J.
        • Martinez A.
        Adaptive radiation therapy.
        Phys Med Biol. 1997; 42: 123-132https://doi.org/10.1088/0031-9155/42/1/008
        • Holschneider C.H.
        • Petereit D.G.
        • Chu C.
        • Hsu I.C.
        • Ioffe Y.J.
        • Klopp A.H.
        • et al.
        Brachytherapy: a critical component of primary radiation therapy for cervical cancer: from the Society of Gynecologic Oncology (SGO) and the American Brachytherapy Society (ABS).
        Brachytherapy. 2019; 18: 123-132https://doi.org/10.1016/j.brachy.2018.11.009
        • Vargo J.A.
        • Beriwal S.
        Image-based brachytherapy for cervical cancer.
        World J Clin Oncol. 2014; 5: 921-930https://doi.org/10.5306/wjco.v5.i5.921
        • Tanderup K.
        • Viswanathan A.N.
        • Kirisits C.
        • Frank S.J.
        Magnetic resonance image guided brachytherapy.
        Semin Radiat Oncol. 2014; 24: 181-191https://doi.org/10.1016/j.semradonc.2014.02.007
        • Fokdal L.
        • Sturdza A.
        • Mazeron R.
        • Haie-Meder C.
        • Tan L.T.
        • Gillham C.
        • et al.
        Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study.
        Radiother Oncol. 2016; 120: 434-440https://doi.org/10.1016/j.radonc.2016.03.020
        • Serban M.
        • Kirisits C.
        • Potter R.
        • de Leeuw A.
        • Nkiwane K.
        • Dumas I.
        • et al.
        Isodose surface volumes in cervix cancer brachytherapy: change of practice from standard (Point A) to individualized image guided adaptive (EMBRACE I) brachytherapy.
        Radiother Oncol. 2018; 129: 567-574https://doi.org/10.1016/j.radonc.2018.09.002
        • Otter S.
        • Coates A.
        • Franklin A.
        • Cunningham M.
        • Stewart A.
        Improving dose delivery by adding interstitial catheters to fixed geometry applicators in high-dose-rate brachytherapy for cervical cancer.
        Brachytherapy. 2018; 17: 580-586https://doi.org/10.1016/j.brachy.2018.01.003
        • Rangarajan R.
        Interfraction variations in organ filling and their impact on dosimetry in CT image based HDR intracavitary brachytherapy.
        J Med Phys. 2018; 43: 23-27https://doi.org/10.4103/jmp.JMP_90_17
        • Paton A.M.
        • Chalmers K.E.
        • Coomber H.
        • Cameron A.L.
        Dose escalation in brachytherapy for cervical cancer: impact on (or increased need for) MRI-guided plan optimisation.
        Br J Radiol. 2012; 85: e1249-e1255https://doi.org/10.1259/bjr/30377872
        • Thiruthaneeswaran N.
        • Groom N.
        • Lowe G.
        • Bryant L.
        • Hoskin P.J.
        Focal boost to residual gross tumor volume in brachytherapy for cervical cancer – a feasibility study.
        Brachytherapy. 2018; 17: 181-186https://doi.org/10.1016/j.brachy.2017.09.012
        • Rijkmans E.C.
        • Nout R.A.
        • Rutten I.H.
        • Ketelaars M.
        • Neelis K.J.
        • Laman M.S.
        • et al.
        Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy.
        Gynecol Oncol. 2014; 135: 231-238https://doi.org/10.1016/j.ygyno.2014.08.027
        • Potter R.
        • Georg P.
        • Dimopoulos J.C.
        • Grimm M.
        • Berger D.
        • Nesvacil N.
        • et al.
        Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer.
        Radiother Oncol. 2011; 100: 116-123https://doi.org/10.1016/j.radonc.2011.07.012
        • Potter R.
        • Dimopoulos J.
        • Georg P.
        • Lang S.
        • Waldhausl C.
        • Wachter-Gerstner N.
        • et al.
        Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer.
        Radiother Oncol. 2007; 83: 148-155https://doi.org/10.1016/j.radonc.2007.04.012
        • Potter R.
        • Tanderup K.
        • Kirisits C.
        • de Leeuw A.
        • Kirchheiner K.
        • Nout R.
        • et al.
        The EMBRACE II study: the outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies.
        Clin Transl Radiat Oncol. 2018; 9: 48-60https://doi.org/10.1016/j.ctro.2018.01.001
        • Forrest J.
        • Presutti J.
        • Davidson M.
        • Hamilton P.
        • Kiss A.
        • Thomas G.
        A dosimetric planning study comparing intensity-modulated radiotherapy with four-field conformal pelvic radiotherapy for the definitive treatment of cervical carcinoma.
        Clin Oncol. 2012; 24: e63-e70https://doi.org/10.1016/j.clon.2011.06.008
        • Klopp A.H.
        • Moughan J.
        • Portelance L.
        • Miller B.E.
        • Salehpour M.R.
        • Hildebrandt E.
        • et al.
        Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer.
        Int J Radiat Oncol Biol Phys. 2013; 86: 83-90https://doi.org/10.1016/j.ijrobp.2013.01.017
        • Hui B.
        • Zhang Y.
        • Shi F.
        • Wang J.
        • Wang T.
        • Wang J.
        • et al.
        Association between bone marrow dosimetric parameters and acute hematologic toxicity in cervical cancer patients undergoing concurrent chemoradiotherapy: comparison of three-dimensional conformal radiotherapy and intensity-modulated radiation therapy.
        Int J Gynecol Cancer. 2014; 24: 1648-1652https://doi.org/10.1097/IGC.0000000000000292
        • Naik A.
        • Gurjar O.P.
        • Gupta K.L.
        • Singh K.
        • Nag P.
        • Bhandari V.
        Comparison of dosimetric parameters and acute toxicity of intensity-modulated and three-dimensional radiotherapy in patients with cervix carcinoma: a randomized prospective study.
        Cancer Radiother. 2016; 20: 370-376https://doi.org/10.1016/j.canrad.2016.05.011
        • Gandhi A.K.
        • Sharma D.N.
        • Rath G.K.
        • Julka P.K.
        • Subramani V.
        • Sharma S.
        • et al.
        Early clinical outcomes and toxicity of intensity modulated versus conventional pelvic radiation therapy for locally advanced cervix carcinoma: a prospective randomized study.
        Int J Radiat Oncol Biol Phys. 2013; 87: 542-548https://doi.org/10.1016/j.ijrobp.2013.06.2059
        • Chan P.
        • Dinniwell R.
        • Haider M.A.
        • Cho Y.B.
        • Jaffray D.
        • Lockwood G.
        • et al.
        Inter- and intrafractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: a cinematic-MRI point-of-interest study.
        Int J Radiat Oncol Biol Phys. 2008; 70: 1507-1515https://doi.org/10.1016/j.ijrobp.2007.08.055
        • Beadle B.M.
        • Jhingran A.
        • Salehpour M.
        • Sam M.
        • Iyer R.B.
        • Eifel P.J.
        Cervix regression and motion during the course of external beam chemoradiation for cervical cancer.
        Int J Radiat Oncol Biol Phys. 2009; 73: 235-241https://doi.org/10.1016/j.ijrobp.2008.03.064
        • Jadon R.
        • Pembroke C.A.
        • Hanna C.L.
        • Palaniappan N.
        • Evans M.
        • Cleves A.E.
        • et al.
        A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer.
        Clin Oncol. 2014; 26: 185-196https://doi.org/10.1016/j.clon.2013.11.031
        • Tyagi N.
        • Lewis J.H.
        • Yashar C.M.
        • Vo D.
        • Jiang S.B.
        • Mundt A.J.
        • et al.
        Daily online cone beam computed tomography to assess interfractional motion in patients with intact cervical cancer.
        Int J Radiat Oncol Biol Phys. 2011; 80: 273-280https://doi.org/10.1016/j.ijrobp.2010.06.003
        • O'Reilly F.H.
        • Shaw W.
        A dosimetric evaluation of IGART strategies for cervix cancer treatment.
        Phys Med. 2016; 32: 1360-1367https://doi.org/10.1016/j.ejmp.2016.06.003
        • Seppenwoolde Y.
        • Stock M.
        • Buschmann M.
        • Georg D.
        • Bauer-Novotny K.Y.
        • Potter R.
        • et al.
        Impact of organ shape variations on margin concepts for cervix cancer ART.
        Radiother Oncol. 2016; 120: 526-531https://doi.org/10.1016/j.radonc.2016.08.004
        • Webster A.
        • Appelt A.L.
        • Eminowicz G.
        Image-guided radiotherapy for pelvic cancers: a review of current evidence and clinical utilisation.
        Clin Oncol. 2020; 32: 805-816https://doi.org/10.1016/j.clon.2020.09.010
        • Hunt A.
        • Hansen V.N.
        • Oelfke U.
        • Nill S.
        • Hafeez S.
        Adaptive radiotherapy enabled by MRI guidance.
        Clin Oncol. 2018; 30: 711-719https://doi.org/10.1016/j.clon.2018.08.001
        • Sibolt P.
        • Andersson L.M.
        • Calmels L.
        • Sjöström D.
        • Bjelkengren U.
        • Geertsen P.
        • et al.
        Clinical implementation of artificial intelligence-driven cone-beam computed tomography-guided online adaptive radiotherapy in the pelvic region.
        Phys Imaging Radiat Oncol. 2021; 17: 1-7https://doi.org/10.1016/j.phro.2020.12.004
        • Bondar L.
        • Hoogeman M.
        • Mens J.W.
        • Dhawtal G.
        • de Pree I.
        • Ahmad R.
        • et al.
        Toward an individualized target motion management for IMRT of cervical cancer based on model-predicted cervix-uterus shape and position.
        Radiother Oncol. 2011; 99: 240-245https://doi.org/10.1016/j.radonc.2011.03.013
        • Ahmad R.
        • Hoogeman M.S.
        • Bondar M.
        • Dhawtal V.
        • Quint S.
        • De Pree I.
        • et al.
        Increasing treatment accuracy for cervical cancer patients using correlations between bladder-filling change and cervix-uterus displacements: proof of principle.
        Radiother Oncol. 2011; 98: 340-346https://doi.org/10.1016/j.radonc.2010.11.010
        • Rios I.
        • Vasquez I.
        • Cuervo E.
        • Garzon O.
        • Burbano J.
        Problems and solutions in IGRT for cervical cancer.
        Rep Pract Oncol Radiother. 2018; 23: 517-527https://doi.org/10.1016/j.rpor.2018.05.002
        • Dutta S.
        • Nguyen N.P.
        • Vock J.
        • Kerr C.
        • Godinez J.
        • Bose S.
        • et al.
        Image-guided radiotherapy and brachytherapy for cervical cancer.
        Front Oncol. 2015; 5: 64https://doi.org/10.3389/fonc.2015.00064
        • Patni N.
        • Burela N.
        • Pasricha R.
        • Goyal J.
        • Soni T.P.
        • Kumar T.S.
        • et al.
        Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins.
        J Cancer Res Ther. 2017; 13: 131-136https://doi.org/10.4103/0973-1482.199451
        • Alexander S.E.
        • Hopkins N.
        • Lalondrelle S.
        • Taylor A.
        • Titmarsh K.
        • McNair H.A.
        RTT-led IGRT for cervix cancer; training, implementation and validation.
        Tech Innov Patient Support Radiat Oncol. 2019; 12: 41-49https://doi.org/10.1016/j.tipsro.2019.10.007
        • Otter S.H.M.
        • Why S.
        • Franklin A.
        • Stewart A.
        The use of ultrasound bladder scanning in cervical IMRT to reduce variability of uterine motion (Conference Abstract).
        Radiother Oncol. 2017; 123
        • Mayr N.A.
        • Taoka T.
        • Yuh W.T.
        • Denning L.M.
        • Zhen W.K.
        • Paulino A.C.
        • et al.
        Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging.
        Int J Radiat Oncol Biol Phys. 2002; 52: 14-22https://doi.org/10.1016/s0360-3016(01)01808-9
        • Chen W.
        • Bai P.
        • Pan J.
        • Xu Y.
        • Chen K.
        Changes in tumor volumes and spatial locations relative to normal tissues during cervical cancer radiotherapy assessed by cone beam computed tomography.
        Technol Cancer Res Treat. 2017; 16: 246-252https://doi.org/10.1177/1533034616685942
        • Lim K.
        • Stewart J.
        • Kelly V.
        • Xie J.
        • Brock K.K.
        • Moseley J.
        • et al.
        Dosimetrically triggered adaptive intensity modulated radiation therapy for cervical cancer.
        Int J Radiat Oncol Biol Phys. 2014; 90: 147-154https://doi.org/10.1016/j.ijrobp.2014.05.039
        • Stewart J.
        • Lim K.
        • Kelly V.
        • Xie J.
        • Brock K.K.
        • Moseley J.
        • et al.
        Automated weekly replanning for intensity-modulated radiotherapy of cervix cancer.
        Int J Radiat Oncol Biol Phys. 2010; 78: 350-358https://doi.org/10.1016/j.ijrobp.2009.07.1699
        • Oh S.
        • Stewart J.
        • Moseley J.
        • Kelly V.
        • Lim K.
        • Xie J.
        • et al.
        Hybrid adaptive radiotherapy with on-line MRI in cervix cancer IMRT.
        Radiother Oncol. 2014; 110: 323-328https://doi.org/10.1016/j.radonc.2013.11.006
        • Bondar M.L.
        • Hoogeman M.S.
        • Mens J.W.
        • Quint S.
        • Ahmad R.
        • Dhawtal G.
        • et al.
        Individualized nonadaptive and online-adaptive intensity-modulated radiotherapy treatment strategies for cervical cancer patients based on pretreatment acquired variable bladder filling computed tomography scans.
        Int J Radiat Oncol Biol Phys. 2012; 83: 1617-1623https://doi.org/10.1016/j.ijrobp.2011.10.011
        • Novakova E.
        • Heijkoop S.T.
        • Quint S.
        • Zolnay A.G.
        • Mens J.W.M.
        • Godart J.
        • et al.
        What is the optimal number of library plans in ART for locally advanced cervical cancer?.
        Radiother Oncol. 2017; 125: 470-477https://doi.org/10.1016/j.radonc.2017.08.033
        • Ahmad R.
        • Bondar L.
        • Voet P.
        • Mens J.W.
        • Quint S.
        • Dhawtal G.
        • et al.
        A margin-of-the-day online adaptive intensity-modulated radiotherapy strategy for cervical cancer provides superior treatment accuracy compared to clinically recommended margins: a dosimetric evaluation.
        Acta Oncol. 2013; 52: 1430-1436https://doi.org/10.3109/0284186X.2013.813640
        • Heijkoop S.T.
        • Langerak T.R.
        • Quint S.
        • Bondar L.
        • Mens J.W.
        • Heijmen B.J.
        • et al.
        Clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid motion management in locally advanced cervical cancer IMRT.
        Int J Radiat Oncol Biol Phys. 2014; 90: 673-679https://doi.org/10.1016/j.ijrobp.2014.06.046
        • Buschmann M.
        • Majercakova K.
        • Sturdza A.
        • Smet S.
        • Najjari D.
        • Daniel M.
        • et al.
        Image guided adaptive external beam radiation therapy for cervix cancer: evaluation of a clinically implemented plan-of-the-day technique.
        Z Med Phys. 2018; 28: 184-195https://doi.org/10.1016/j.zemedi.2017.09.004
        • de Boer P.
        • Jurgenliemk-Schulz I.M.
        • Westerveld H.
        • de Leeuw A.A.C.
        • Davila-Fajardo R.
        • Rasch C.R.N.
        • et al.
        Patterns of care survey: radiotherapy for women with locally advanced cervical cancer.
        Radiother Oncol. 2017; 123: 306-311https://doi.org/10.1016/j.radonc.2017.04.005
        • Yang D.
        • Kim H.
        • Green O.
        • Henke L.
        • Gu B.
        • Cai B.
        • et al.
        Co-60 MR guided adaptive radiation treatment improves target coverage and organs-at-risk sparing: dosimetric analysis of 1185 adaptive fractions and 5 years’ experience (Conference Abstract).
        Int J Radiat Oncol Biol Phys. 2020; 108e300https://doi.org/10.1016/j.ijrobp.2020.07.718
        • Fischer-Valuck B.W.
        • Henke L.
        • Green O.
        • Kashani R.
        • Acharya S.
        • Bradley J.D.
        • et al.
        Two-and-a-half-year clinical experience with the world's first magnetic resonance image guided radiation therapy system.
        Adv Radiat Oncol. 2017; 2: 485-493https://doi.org/10.1016/j.adro.2017.05.006
        • White I.M.
        • Mcquaid D.
        • Goodwin E.
        • Lalondrelle S.
        Image guided adaptive external beam radiotherapy (EBRT) planning for cervical cancer - a comparison of offline, online and MRI-guided techniques to reduce organ at risk (OAR) dose using a dose accumulation model (Abstract).
        Int J Radiat Oncol Biol Phys. 2019; 105: S250-S251https://doi.org/10.1016/j.ijrobp.2019.06.373
        • Fields E.C.
        • Weiss E.
        A practical review of magnetic resonance imaging for the evaluation and management of cervical cancer.
        Radiat Oncol. 2016; 11: 15https://doi.org/10.1186/s13014-016-0591-0
        • Noel C.E.
        • Parikh P.J.
        • Spencer C.R.
        • Green O.L.
        • Hu Y.
        • Mutic S.
        • et al.
        Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy.
        Acta Oncol. 2015; 54: 1474-1482https://doi.org/10.3109/0284186X.2015.1062541
        • Sadigh G.
        • Applegate K.E.
        • Saindane A.M.
        Prevalence of unanticipated events associated with MRI examinations: a benchmark for MRI quality, safety, and patient experience.
        J Am Coll Radiol. 2017; 14: 765-772https://doi.org/10.1016/j.jacr.2017.01.043
        • White I.M.
        • Scurr E.
        • Wetscherek A.
        • Brown G.
        • Sohaib A.
        • Nill S.
        • et al.
        Realizing the potential of magnetic resonance image guided radiotherapy in gynaecological and rectal cancer.
        Br J Radiol. 2019; 92: 20180670https://doi.org/10.1259/bjr.20180670
        • Kerkmeijer L.G.W.
        • Maspero M.
        • Meijer G.J.
        • van der Voort van Zyp J.R.N.
        • de Boer H.C.J.
        • van den Berg C.A.T.
        Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer.
        Clin Oncol. 2018; 30: 692-701https://doi.org/10.1016/j.clon.2018.08.009
        • Viswanathan A.N.
        • Dimopoulos J.
        • Kirisits C.
        • Berger D.
        • Potter R.
        Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours.
        Int J Radiat Oncol Biol Phys. 2007; 68: 491-498https://doi.org/10.1016/j.ijrobp.2006.12.021
        • Qiu Y.
        • Moiseenko V.
        • Aquino-Parsons C.
        • Duzenli C.
        Equivalent doses for gynecological patients undergoing IMRT or RapidArc with kilovoltage cone beam CT.
        Radiother Oncol. 2012; 104: 257-262https://doi.org/10.1016/j.radonc.2012.07.007
        • Pathmanathan A.
        • Bower L.
        • Creasey H.
        • Dunlop A.
        • Hall E.
        • Mitchell A.
        • et al.
        MR-guided online adaptive radiotherapy: first experience in the UK (Conference Abstract).
        Radiother Oncol. 2019; 133: S845https://doi.org/10.1016/S0167-8140%2819%2931986-3
        • Tetar S.U.
        • Bruynzeel A.M.E.
        • Lagerwaard F.J.
        • Slotman B.J.
        • Bohoudi O.
        • Palacios M.A.
        Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer.
        Phys Imaging Radiat Oncol. 2019; 9: 69-76https://doi.org/10.1016/j.phro.2019.02.002
        • Li J.
        • Ouyang Y.
        • Cao X.
        First postoperative cervical cancer patients treated with a 1.5 unity MR-linac and analysis of treatment safety and acute toxicity (Conference Abstract).
        Int J Radiat Oncol Biol Phys. 2020; 108: e485https://doi.org/10.1016/j.ijrobp.2020.07.1542
        • Rosa C.
        • Pizzi A.D.
        • Augurio A.
        • Caravatta L.
        • Di Tommaso M.
        • Mincuzzi E.
        • et al.
        Volume delineation in cervical cancer with T2 and diffusion-weighted MRI: agreement on volumes between observers.
        Vivo. 2020; 34: 1981-1986https://doi.org/10.21873/invivo.11995
        • Kumar R.
        • Kala P.
        • Narayanan G.S.
        • Vishwanathan B.
        • Narayanan S.
        • Mandal S.
        • et al.
        Evaluation and evolution of apparent diffusion coefficient (ADC) in image-guided adaptive brachytherapy (IGABT) for cervical cancer.
        Brachytherapy. 2021; 20: 112-117https://doi.org/10.1016/j.brachy.2020.07.014
        • Schernberg A.
        • Kumar T.
        • Achkar S.
        • Espenel S.
        • Bockel S.
        • Majer M.
        • et al.
        Incorporating magnetic resonance imaging (MRI) based radiation therapy response prediction into clinical practice for locally advanced cervical cancer patients.
        Semin Radiat Oncol. 2020; 30: 291-299https://doi.org/10.1016/j.semradonc.2020.05.007
        • Zhu L.
        • Zhu L.
        • Shi H.
        • Wang H.
        • Yan J.
        • Liu B.
        • et al.
        Evaluating early response of cervical cancer under concurrent chemo-radiotherapy by intravoxel incoherent motion MR imaging.
        BMC Cancer. 2016; 16: 79https://doi.org/10.1186/s12885-016-2116-5
        • Hales R.B.
        • Rodgers J.
        • Whiteside L.
        • McDaid L.
        • Berresford J.
        • Budgell G.
        • et al.
        Therapeutic radiographers at the helm: moving towards radiographer-led MR-guided radiotherapy.
        J Med Imaging Radiat Sci. 2020; 51: 364-372https://doi.org/10.1016/j.jmir.2020.05.001
        • Hehakaya C.
        • Van der Voort van Zyp J.R.
        • Lagendijk J.J.W.
        • Grobbee D.E.
        • Verkooijen H.M.
        • Moors E.H.M.
        Problems and promises of introducing the magnetic resonance imaging linear accelerator into routine care: the case of prostate cancer.
        Front Oncol. 2020; 10: 1741https://doi.org/10.3389/fonc.2020.01741
        • Liney G.P.
        • Whelan B.
        • Oborn B.
        • Barton M.
        • Keall P.
        MRI-linear accelerator radiotherapy systems.
        Clin Oncol. 2018; 30: 686-691https://doi.org/10.1016/j.clon.2018.08.003
        • Ingle M.
        • Lalondrelle S.
        Current status of anatomical magnetic resonance imaging in brachytherapy and external beam radiotherapy planning and delivery.
        Clin Oncol. 2020; 32: 817-827https://doi.org/10.1016/j.clon.2020.10.009
        • Corradini S.
        • Alongi F.
        • Andratschke N.
        • Belka C.
        • Boldrini L.
        • Cellini F.
        • et al.
        MR-guidance in clinical reality: current treatment challenges and future perspectives.
        Radiat Oncol. 2019; 14: 92https://doi.org/10.1186/s13014-019-1308-y
        • Viswanathan A.N.
        • Erickson B.
        • Gaffney D.K.
        • Beriwal S.
        • Bhatia S.K.
        • Lee Burnett 3rd, O.
        • et al.
        Comparison and consensus guidelines for delineation of clinical target volume for CT- and MR-based brachytherapy in locally advanced cervical cancer.
        Int J Radiat Oncol Biol Phys. 2014; 90: 320-328https://doi.org/10.1016/j.ijrobp.2014.06.005
        • Schmid M.P.
        • Fidarova E.
        • Potter R.
        • Petric P.
        • Bauer V.
        • Woehs V.
        • et al.
        Magnetic resonance imaging for assessment of parametrial tumour spread and regression patterns in adaptive cervix cancer radiotherapy.
        Acta Oncol. 2013; 52: 1384-1390https://doi.org/10.3109/0284186X.2013.818251
        • Chin S.
        • Eccles C.L.
        • McWilliam A.
        • Chuter R.
        • Walker E.
        • Whitehurst P.
        • et al.
        Magnetic resonance-guided radiation therapy: a review.
        J Med Imaging Radiat Oncol. 2020; 64: 163-177https://doi.org/10.1111/1754-9485.12968
        • Boldrini L.
        • Cusumano D.
        • Cellini F.
        • Azario L.
        • Mattiucci G.C.
        • Valentini V.
        Online adaptive magnetic resonance guided radiotherapy for pancreatic cancer: state of the art, pearls and pitfalls.
        Radiat Oncol. 2019; 14: 71https://doi.org/10.1186/s13014-019-1275-3
        • Cree A.
        • Livsey J.
        • Barraclough L.
        • Dubec M.
        • Hambrock T.
        • Van Herk M.
        • et al.
        The potential value of MRI in external-beam radiotherapy for cervical cancer.
        Clin Oncol. 2018; 30: 737-750https://doi.org/10.1016/j.clon.2018.08.002
        • Chuter R.W.
        • Whitehurst P.
        • Choudhury A.
        • van Herk M.
        • McWilliam A.
        Technical Note: Investigating the impact of field size on patient selection for the 1.5T MR-linac.
        Med Phys. 2017; 44: 5667-5671https://doi.org/10.1002/mp.12557
        • Pappas E.
        • Kalaitzakis G.
        • Boursianis T.
        • Zoros E.
        • Zourari K.
        • Pappas E.P.
        • et al.
        Dosimetric performance of the Elekta Unity MR-linac system: 2D and 3D dosimetry in anthropomorphic inhomogeneous geometry.
        Phys Med Biol. 2019; 64: 225009https://doi.org/10.1088/1361-6560/ab52ce
        • de Mol van Otterloo S.R.
        • Christodouleas J.P.
        • Blezer E.L.A.
        • Akhiat H.
        • Brown K.
        • Choudhury A.
        • et al.
        The MOMENTUM Study: An international registry for the evidence-based introduction of MR-guided adaptive therapy.
        Front Oncol. 2020; 10: 1328https://doi.org/10.3389/fonc.2020.01328
        • Tanderup D.K.
        • Potter R.
        • Lindegaard D.J.C.
        • Kirisits D.C.
        • Juergenliemk-Schulz I.M.
        • de Leeuw D.A.
        • et al.
        Image guided intensity modulated external beam radiochemotherapy and MRI based adaptive brachytherapy in locally advanced cervical cancer. EMBRACE-II.
        (Available at:)
        • Archambault Y.
        • Boylan C.
        • Bullock D.
        • Morgas T.
        • Peltola J.
        • Ruokokoski E.
        • et al.
        Making on-line adaptive radiotherapy possible using artificial intelligence and machine learning for efficient daily re-planning.
        Med Phys Int J. 2020; 8: 77-86
        • Yock A.
        • Ahmed M.
        • Newman N.
        • Ayala-Peacock D.
        • Chakravarthy A.
        • Price M.
        Dosimetric impact and required clinician time of online adaptive radiotherapy using a newly commercially-available, CBCT-based treatment system (Conference Abstract).
        Int J Radiat Oncol Biol Phys. 2020; 108: e318https://doi.org/10.1016/j.ijrobp.2020.07.760
        • Lim-Reinders S.
        • Keller B.M.
        • Al-Ward S.
        • Sahgal A.
        • Kim A.
        Online adaptive radiation therapy.
        Int J Radiat Oncol Biol Phys. 2017; 99: 994-1003https://doi.org/10.1016/j.ijrobp.2017.04.023
        • Hussein M.
        • Heijmen B.J.M.
        • Verellen D.
        • Nisbet A.
        Automation in intensity modulated radiotherapy treatment planning – a review of recent innovations.
        Br J Radiol. 2018; 91: 20180270https://doi.org/10.1259/bjr.20180270
        • Sharfo A.W.
        • Breedveld S.
        • Voet P.W.
        • Heijkoop S.T.
        • Mens J.M.
        • Hoogeman M.S.
        • et al.
        Validation of fully automated VMAT plan generation for library-based plan-of-the-day cervical cancer radiotherapy.
        PLoS One. 2016; 11e0169202https://doi.org/10.1371/journal.pone.0169202
        • Rigaud B.
        • Anderson B.M.
        • Yu Z.H.
        • Gobeli M.
        • Cazoulat G.
        • Soderberg J.
        • et al.
        Automatic segmentation using deep learning to enable online dose optimization during adaptive radiotherapy of cervical cancer.
        Int J Radiat Oncol Biol Phys. 2021; 109: 1096-1110https://doi.org/10.1016/j.ijrobp.2020.10.038
        • Lim K.
        • Small Jr., W.
        • Portelance L.
        • Creutzberg C.
        • Jurgenliemk-Schulz I.M.
        • Mundt A.
        • et al.
        Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer.
        Int J Radiat Oncol Biol Phys. 2011; 79: 348-355https://doi.org/10.1016/j.ijrobp.2009.10.075
        • Seppenwoolde Y.
        • Assenholt M.S.
        • Georg D.
        • Nout R.
        • Tan L.T.
        • Rumpold T.
        • et al.
        Importance of training in external beam treatment planning for locally advanced cervix cancer: report from the EMBRACE II dummy run.
        Radiother Oncol. 2019; 133: 149-155https://doi.org/10.1016/j.radonc.2019.01.012
        • Duke S.L.
        • Tan L.T.
        • Jensen N.B.K.
        • Rumpold T.
        • De Leeuw A.A.C.
        • Kirisits C.
        • et al.
        Implementing an online radiotherapy quality assurance programme with supporting continuous medical education – report from the EMBRACE-II evaluation of cervix cancer IMRT contouring.
        Radiother Oncol. 2020; 147: 22-29https://doi.org/10.1016/j.radonc.2020.02.017
        • Vandewinckele L.
        • Claessens M.
        • Dinkla A.
        • Brouwer C.
        • Crijns W.
        • Verellen D.
        • et al.
        Overview of artificial intelligence-based applications in radiotherapy: recommendations for implementation and quality assurance.
        Radiother Oncol. 2020; 153: 55-66https://doi.org/10.1016/j.radonc.2020.09.008
        • Heijkoop S.T.
        • Langerak T.R.
        • Quint S.
        • Mens J.W.
        • Zolnay A.G.
        • Heijmen B.J.
        • et al.
        Quantification of intra-fraction changes during radiotherapy of cervical cancer assessed with pre- and post-fraction cone beam CT scans.
        Radiother Oncol. 2015; 117: 536-541https://doi.org/10.1016/j.radonc.2015.08.034
        • Cree A.
        • Dubec M.
        • Mistry H.
        • Hoskin P.
        • Choudhury A.
        • McWilliam A.
        Is intrafraction motion an important consideration in MR guided external beam radiotherapy for cervical cancer? (Conference Abstract).
        Int J Radiat Oncol Biol Phys. 2019; 105: E321https://doi.org/10.1016/j.ijrobp.2019.06.1800
        • Chetty I.J.
        • Fontenot J.
        Adaptive radiation therapy: off-line, on-line, and in-line?.
        Int J Radiat Oncol Biol Phys. 2017; 99: 689-691https://doi.org/10.1016/j.ijrobp.2017.07.017
        • Wang W.
        • Zhang F.
        • Hu K.
        • Hou X.
        Image-guided, intensity-modulated radiation therapy in definitive radiotherapy for 1433 patients with cervical cancer.
        Gynecol Oncol. 2018; 151: 444-448https://doi.org/10.1016/j.ygyno.2018.09.024
        • Chopra S.
        • Dora T.
        • Gupta S.
        • Kannan S.
        • Engineer R.
        • Menachery S.
        • et al.
        Phase III randomized trial of postoperative adjuant conventional radiation (3DCRT) versus image guided intensity modulated radiotherapy (IG-IMRT) in cervical cancer (PARCER): final analysis (Conference Abstract).
        Int J Radiat Oncol Biol Phys. 2020; 108: S1-S2https://doi.org/10.1016/j.ijrobp.2020.07.2069
        • Jensen N.B.K.
        • Potter R.
        • Spampinato S.
        • Fokdal L.U.
        • Chargari C.
        • Lindegaard J.C.
        • et al.
        Dose-volume effects and risk factors for late diarrhea in cervix cancer patients after radiochemotherapy with image guided adaptive brachytherapy in the EMBRACE I study.
        Int J Radiat Oncol Biol Phys. 2021; 109: 688-700https://doi.org/10.1016/j.ijrobp.2020.10.006
        • Verkooijen H.M.
        • Kerkmeijer L.G.W.
        • Fuller C.D.
        • Huddart R.
        • Faivre-Finn C.
        • Verheij M.
        • et al.
        R-IDEAL: a framework for systematic clinical evaluation of technical innovations in radiation oncology.
        Front Oncol. 2017; 7: 59https://doi.org/10.3389/fonc.2017.00059
        • Bertholet J.
        • Anastasi G.
        • Noble D.
        • Bel A.
        • van Leeuwen R.
        • Roggen T.
        • et al.
        Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part II: Offline and online plan adaption for interfractional changes.
        Radiother Oncol. 2020; 153: 88-96https://doi.org/10.1016/j.radonc.2020.06.017
      1. Clinical oncology UK workforce census report 2019. The Royal College of Radiologists, 2020 (Available at:)
        • McNair H.A.
        • Hafeez S.
        • Taylor H.
        • Lalondrelle S.
        • McDonald F.
        • Hansen V.N.
        • et al.
        Radiographer-led plan selection for bladder cancer radiotherapy: initiating a training programme and maintaining competency.
        Br J Radiol. 2015; 88: 20140690https://doi.org/10.1259/bjr.20140690
        • Tan L.T.
        • Tanderup K.
        • Kirisits C.
        • de Leeuw A.
        • Nout R.
        • Duke S.
        • et al.
        Image-guided adaptive radiotherapy in cervical cancer.
        Semin Radiat Oncol. 2019; 29: 284-298https://doi.org/10.1016/j.semradonc.2019.02.010
        • Swamidas J.V.
        • Kirisits C.
        IMRT, IGRT, and other high technology becomes standard in external beam radiotherapy: but is image-guided brachytherapy for cervical cancer too expensive?.
        J Med Phys. 2015; 40: 1-4https://doi.org/10.4103/0971-6203.152229
        • Kong V.
        • Taylor A.
        • Chung P.
        • Rosewall T.
        Evaluation of resource burden for bladder adaptive strategies: a timing study.
        J Med Imaging Radiat Oncol. 2018; 62: 861-865https://doi.org/10.1111/1754-9485.12787
        • Schumacher L.D.
        • Dal Pra A.
        • Hoffe S.E.
        • Mellon E.A.
        Toxicity reduction required for MRI-guided radiotherapy to be cost-effective in the treatment of localized prostate cancer.
        Br J Radiol. 2020; 93: 20200028https://doi.org/10.1259/bjr.20200028